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RECTANGULAR-TUBE SEGTIORS 

By Elbridge Z. Stowell and Eugene E. Lundquist 

SUMMARY 

Charts are presented for the coefficients in the for- 
mulas for t'he critical compressive stress at nhich cross- 
sectional distortion begins in thin-wall columns of I-, 
Z-3 channel, and rectangular-tube sections. The energy- 
method of Timoshenko was used in the theoretical calculai -- 
tions required for the construction of the charts.- The 
deflection equations were carefully selected to give good- - 
accuracy. 

The calculation of the critical compressive stress at 
stresses above the elastic ran<e is briefly discussed. In = 
order to demonstrate the use.of the formulas and the charts 
in engineering calculations, two illustrative problems are 
included. 

INTRODUCTION 

In the-design of compression members for aircraft, 
mhether'they be stiffeners in stressed-skin structures or 
struts in trussed structures, the allowable stress for the 
member is equal to the lowest strength corresponding to - 
any of the possible types of failure,. In references 1 and i - 
2, all types of column failu.re are classed under two head- 
ings: 

(a) Primary, or qeneral, failure. 

(b) Secondary, or local, failure. 

Primary, or general, failure of.a column.3.s defined 
as any type of failure in which the cross sections are 
translated, rotated, or both translated and rotated but 
not distorted in their ovn planes.(fig. 1). Secondary, or 
local, failure of a column is defined as any type of fail- 
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ure in which the cross sections are distorted in their own 
planes but not translated or rotated (fig. 2). Consider- 
ation is given in this paper only to local failure. 

One of the factors to be considered in a atudy of lo- 
cal failure is the dritical compressive stress at which 
the cross section begins to distort. This critical stress 
can usually be given in .co'efficient form. In two $rovious 
Papers, coefficients are given for the rectangular tube 
(reference 3) and for columns of channel section and Z- 
section (reference 4). The purpose of the present paper 
is TV summarize the results embodied in refercnccs 3 and 4 
and also to present coefficients that will permit the crfta 
ical compressive stress to be computed for an I-section 
column. 

The calculations required to evaluate the coofffcionts 
plotted in the charts were made by the energy method of 
Timoshenko (reference 5). Because the calculations are 
long and were made as a part of a more axtcnded study of 
local failure in thin-metal columns, they have been omit- 
.t.ed from this paper. 

Bernard Rubensfoin, formerly of the B.A.C.A. staff, 
performed a large part of the mathematical derivations 
required for the preparation of this oaper. 

. 

CSARTS 

The calculation of-the critical compressive stress at 
which cross-sectional distortion besins in any thin-wall 
column is, in reality,- a problem in the buckling of thin 
plates, proper consideration being given to the interac- 
tion between the adjacent plates composing the cross e8ti- 
tion. Each of the sections c0nsidered.i.n this paper con? 
si.sts of two basic alate elements, Iior example, in th-+I- 
section these elements are the flange glsto and the web 

' plate. 

Timoshenko gives the critical stress for a rectangu- 
lar zlate under edge compression in the following form 
(reference 6, p,. 605): 

f kn2Ete = -d--P 
.cr 12(1 - $ >ba 

- 

(1) _ 
1 
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c. 

f- 

where 

E is tension-compression modulus of elasticity 
for the material. 

P,r 

t, 

b, 

k -5 

Poisson's ratio for the material. 

thickness of the plate. 

width of the plate. _ 

a nondimensional coefficient dependent upon 
the conditions of edge support and the di-' -- .- 
mensions of the plate. 

. 
This equation can be used to calculate the critical 

compressive stress at rhich cross-sectional distortizn 
beqins in columns with the sections considered in this pa- 
per. If. t and b are the t'aicknoss and the half-w5d5h- 
of the flange, respectively, for an I-section; then the 
restraining effect of the web, whether positive, neqative, 
or zero, is included fn the coefficient k. On the other 
hand, if t and b are the thickness and the midth of 
the web, a different set of values for k is obtained. 
It is therefore necessary to decide whether t aiid ii in.. 
the equation for the critical stress shall refer tg the 
flange plate or the web plate. Each form has advantages 
in certain cases. In this re;port, both fbrms ~~511 be 
given, either of which may be used to caiculate the critical 
stress. 

and 

As applied to Z-section columns, these two forms are: 

f 
kF&tF2 = --y -- 

cr 12(1 - $)bF" 

f 
kgrr2Et$ 

cr=--- 
12(1 - I.L%JW2 

- -- 
(3) 

In these formulas, either of which may be used, 

tF and tm are the thicknesses of the flanqe and the 
mob plates, respectivolzr. 

.- -.+ 
LZ 
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kF and kv, nondimensional coefficients dependent on 
the shape of the cross section. (See 
fi4s. 3 and 4.1 

bF is the half-nidth of the flanqe. (See 
sketches on fiqs. 3 and 4.) 

bw, width of the we5. 

The values of kF and lqy I as calculated by the provi- 
ously mentioned enerry method, are liste-d.in tables I and 
II. .Tliese calculated values were plotted against bw/ bF 
and 3F/bW, respectively, to obtain the curves shown in 
figures 3 and 4. 

Equations (2) and (3) are given on fiquros 3 and 4, 
respectively, mith f,, replaced by f,,/q. The nondi- 
mensional coefficient Tj allows for the effucrt of stress 
bego,nd the elastic ranqe and is discussed in 3 later aec- 
tion. 

-The relation bet- kF nod kw foi a eiven I- 
section column-is sometimes of interest; it is -obtained 
by equating the right-hand sides of.equationa (2) and (3), 
which El;ives . . 

. (4) 

: Equations (21, (?;J, and (4) also a'??l;v to colu~ln~ of 
channel-section and Z-section, for which 'the values of 
kF and km are given in fie;ures Land 6. It is impor- 
tant to note that, in these cases, bF refers to the to- 
tal width of the flanse. The values of kF and kv used 
to draw the curves in figures 5 and 6,are listed in tables 
III and-IV, respectively. 

For the case of.the rectangular tube, let the cross- 
sectional dimensions of the tu%e be as shown in the sketch 
on figure 7. .It mill always be possible tePsoloct the 
sides of width b and h so that 4 hj '* mith this 
choice of sides, 
tube is 

,tho critical comgrsssive stress for the 
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L 

k&th2 
f crcAp- 

12(1 - p")ha 
(5) 

' -. 

in which k may be read from figure 7. The values of k 
used to draw these curves are listed in table V. 

The k-coefficients given herein apply to columns in 
which the material is both elastic and isotropic. Steel, 
aluminum alloys, and other metallic materials usually sat- 
isfy these conditions provided that tho material is-not 
stressod beyond the elastic range. Ken a matorial is 
stressed beyond the proportional limit in one direction, 
it is no loqar elastic and is probably no longer isotrop- 
ic. In a later part of the papor a method is. p_rosented 
for calculating the critical stress when the columns are 
loaded beyond the proportional limit. . 

DEFLECTIOX EQUATIOBS 

The Plate elements that make.up the sides of the col- 
umns treated fall into two classes, namely: 

(a) Plates restrained along both edges, as the web 
of a channel or as the sides of the rectangular tube. 

(b) Plates restrained along only one edge, as one . 
flane;e of the channel section or the half-flange of the 
I-section. 

The deflection equation assumed for plates of-class ' _. -. _ 
(a) is . . _-- - 

and, for class (b), 

5 4 3 
Y w = "TJ - 4.963 -I- 9.852 

a 
-9.778 

()I} 
$ sin ZE 

L ' 

(6) 

(7) 
‘Y where 



N.A.C..A. Technical 3ote No. 743 

W is deflection normal to plate. 

A, B, G, and D, arbitrary deflection amplitudes. 

YS coordinate. across plate, measured from one cd&o. 

b, width of member. 

ns number of half-waves in lenqth L. 

X9 coordinate in direction of lenqth L. 

L, length of member. 

For the channeli the Z-, and the I-sections, the val- 
ues of C and D for the flanP;es may be expressed in 
terms of A and B for the web through the conditions 
that the corner angles are maintained during buckling and 
that the moments at each corner ere in equilibrium. The 
values of WA and L/n are thon adjusted to make the 
critical stress a minimum. The same considorstions apply 
to the rectangular tube, 
form of (5) are used, 

exco?t that two equations of the 
one for each ?air of walls. 

The foregoing deflection equations used in the- onor4g 
solution were carefully seloctod. A comparison of the ox- 
act values of k with the values of k for the rectanqu- 
lar tube as gFven by the ener;;y method reveals that the en- 
ergy values are leas than 1 percent in error. 
ence 3.) 

(Sea rofer- 
The values of k for the other sections are also 

believed to be correct to the same order of magnitude.. 
This belief is justified because, f.n the limitln$ cases 
for which exact solutions are available, the ~recislon is 
within these lfmfts. In addition< other Drobloms in which 
these deflection equations have been used c=avc a procfsion 
better than 1 percent. 

DISCUSSION OF CBASTS 

Figures 3 to 7 give .the computed values of tho k-coof- 
ficients plotted against bv/bF s bF/bV, or b/h. When 
the webs are narrow in comparison with the flanqee, the in- 
stabflity occurs first in the flanqee. As bm/bF Fn- 
creases, a saint is reached whore the webs bgcomo the 
weaker part of the cross section. For example, this point 

. 
- 

-L 

Ir 
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is clearly discernible in figure 3 where two of the curves 
break sharply at certain values of 

b&F l 

- 

CRITICAL STRESS FOR LOADING BEYOND THE PROPORTIONAL LIMIT 

In the elastic range, the critical compressive stress 
for an ordinary column that fails by bendins is given by 
the Euler formula. Beyond the proportional limit marking 
the upper end of the elastic range, the reduced slope of 
&he stress-strain curve requires.that an &f-ective mzodulus 

-3 

E be substituted for Young's modulus E in the Euler- ' 
formula. The value of 3 is sometimes written 

ii = TE (8) 

The value of the nondimensional coefficient 7 varies 
with stress. By the use of the double-modulus theory of 
column action, theoretical values of 7 can be obtained 
from the compressive stress-strain curve for the material 
(reference 6, p. 572, and references 7 and 8). Tests--show . 
that, in practice, theoretical values of T,- derived on 
the assumption that no deflection occurs until the -crfti--- 
cal load is reached, are too larse. 
for practical use, 

It i's therefore best., _ _.. 
to obtain the value of T from the ac- .--._ _ cepted column curve for the material, as will be shown 

later. The values of 7 thus obtained take into-account 
the effect of imperfections that cause deflection from the 
beginning of loadin$ as well as other factors that may 
have a bearing on the strength. 

For cross-sectional distortion of a thin-wall column, 
the critical compressive stress-is qiven by the basic equa- 
tion (1). Beyond the proportional limit, the critical com- 
pressive stress is Given by this equation with an effec- 
tive modulus 'F[E substituted for E, or: 

f v kn2Et2 
cr = --- 

12(1 - cL2G2 
(91 

In the absence of.adequate test data, the value of the non- 
dimensional coefficient 'f) cannot be definitely estab- 
lished. It is reasonable to suppose, however, that rl 
and T are related in some way. 

Various equations relating ?J and 7 have been su$;- 
gested. The discussion of reference 3 points out that, ,-- 



8 N.A.C.A. Technical Note Bo. 743 

when '(1 is considered to be a function of P, the equa- 
tion for q will depend upon--the manner of' evaluation of 
7. If T is determined from the stress-strain curve on 
the assumption that no deflection takes place until the 
critical load is reached, the effect of deflection6 from 
the beginninq of loadin< must be separately considorod. 
If 7 is determined, however; from the accept-e-d column 
curve for the materi.al in the manner outlined in the illus- 
trative problems of reference 3, pert, if not all, of this 
effect is' automatically considered. 

A careful study of-the theory and of such,experimen- 
tal data as are available indicates that a conservative 
assumption is 

provided that T is evaluated by use of the accantod col- 
umn curve for the material. This equation nil1 probably 
need to be modified as more test data become available. 

.- 

Now T is itself a function of the stress fc,. 
.Hence, rt is a function of f,,. Consequently, equation 

(9) cannot be 6OlVed directly for fc,. If the equation 
is divided by ?'J, however, then ,fcr/v ie gfvon directly 
by the geometrical dimensions of the cross section. 

* 

Thus, 
(3) b 

for the I-section column, equations (2) and 
ecome 

nnd 

f cr kFn2Etp2 
-- 

71 
= -----A- .-- 

12(1-.- J)bP2 

f cr -- 
T 

(11) 
c 

(12) 

For the columns of channel and Z-section, 
and (12) also hold, except that bp 

equations (11) 
is t'rro entire width 

of the flanqe. 
- 

x 

Y 

For the rectangular tube 
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f cr k7-r sEt,h2 
-- = . --- ..- 

rl 12(1 - p*)h' 
(13) 

'The values of the k-coefficients are read as usual 
from figures 3 to 7. Thus, fcr/q is determined for'the 
cross section under consideration from equation (ll), (121, 
or (13). The value of f,, i$ then determined from 
fcr/n* 

RELATION BETWREN f,, AND fcr/"Q 

Assume that the value of q is st;iven by equation (10). 
As stated previously, T and hence 7 depend upon the 
critical stress. Althouqh theoretically the values of T 
and hence of rl can be obtained from the stress-strain 
curve, they are best obtained from the accepted column 
curve for the materfal. 

The equations that show the variation of T wit.h 
stress for 24ST aluminum alloy that Just meets the require- 
ments of Navy Department Specification 46A9a- (tensile yield 
strength, 42,000 pounds per square inch) are qi-ven in part 
I of reference 9. In order to show how similar equations 
can be derived for any other material, equations will be 
derived from the column formulas siven in reference 9 for 
24ST aluminum alloy. 

The accepted column formulas for 24ST aluminum alloy 
are siven by-equations (8) and (9) of reference 9. These 
equations are: 

For. '41,200 > fcr > 19,600 lb./sq. in.., 

f cr = 43,700 1 - 0.00752 : 

For f,, < 1'9,600 lb./sq. in., 

= 105200~00 ._ 
f - 

cr 
(L/P) 

. 

(14) 

For the same member, the critfcal itress civen by the 
acc.epted column curve.must equal the critical stress riven 
by the Euler formula with an effective modulus E = TX 
substituted for Young's modulus E, or 
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%r Tr2”7E 
=T;E7;;7;"= 

T 1052Oc)O~ 
WP)2 

If equations (14) and (15) are solved for L/P, 
follominq expressions are obtained: 

For 41,2Cn > fcr > 19,600 lb;/sq. in!, 

43700 - f,, 
L/p = --- 

728.6 

For fcr < 19,600 lb&q. in. 

--_- L= 
T; 

----- 

06) 

the 

(17) __ 

.I 

(15). * 

Substitution of these values of L/P in equation (16) 
gives: 

c 
For 41,290 > f,, > 19,600 lb,/sq. in,, 

f f 2 
q- = --CT 1,224 - _c1" 

8925 25730 

For fcr < 19,600 lb./sq. in.; .... 

(19) 

- 

T = 1 (20) 

By the use of equations (19) and (20), the value of 
7 can be established for assumed values of fc,. The 
values of 7 obtained can then be. substituted in equation 
(10) to obtain t-he corresponding vaLues of ?J. If the as- 
sumed vrrlues of fc, are divided by t.he corrospondins 
values of Tj, a curve of fcr n<uh-Lst fCJTJ can be 
plotted. In figure 8, several such curves are given for 
24ST aluminum alloy for different assumed relations be- 
tween Tj and T. When the value of f cr/lJ has beon ob- 
tained by use of equation (ll), (121, or (13), the value -- 
Of fcr is read from one of the curves of fiil;ura 8. 

The ult-imatc strength of a thin-wall column will., in Y 
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general, be higher than the load at which cross-sectional 
distortion begins. At stresses approachin: the yield 
point of the material, the critical load and the ultimata 
load approach the same value. No attempt has been made in 
this paper to discuss the ultimate -s5ren<th of a thin-wall 
column; the solution for the critical load logically pre- 
cedes the solution for the ultimate load. 

ILLUSTRATIVE PROBLEMS 

It is desired to calculate the critical compressive 
stress at which cross-sectional distortion begins in two 
I-section columns constructed of 24ST aluminum alloy: z 

Column A Golumn I) -. ------ 

bF =lin. . bF = 2 in. 

bW = 2 in. bW = 4 in. 

tF = 0.1 in. tp = 0.2 in. 

t, = O.l.in. = 0.1 in. 

Solution for Column A 

QLO.l=l 
5 0.1 

From figure 3, kF = 0.662 

For this material, E = 10.66 x 1Oe lb. per sq. in. 

and pl = 0.3. 

From equation (111, , 

fCT= 0'.662 x IT2 x 10.66 x lo6 x .(O.l) 
a 

-- 
n 12(1 - 0.a x (1Y 

U 63,800 lb,/sq. in. 

From the-solid curve of figure 8, f,, = 33,000 lb./sq. in. 
- 
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, 
Solution for Column B 

tw o-1 = 0 5 
t; = Yjy: l 

From figure 4, km = 6.82 

?'rom this material, E = 10.66 x 10' lb. per sq. in. 

and jL = 0.3 

From equation (12), 

i . 

f cr 6.82 x TT~ X 10.66 6 x 10 x (o.l?e -- = ----------- ---- = 
n 12(1 - 0.39 (4)e 

41,100 lb./so+. in. 
x 

From the solid curve of fiqure 8, fcr = 28,800 lb./sq. in. 

1. The critical comGr-essive stress at which cross- 
sectional distortion beqins in a thin-mall column of chan- 
nel, Z-, or I-section is <ivan by either of the following 
equations: 

f 
kg7T%tFa 

cr = l-j ----- 
12(1-- p=)b/ 

or 

f cr 

lvhere E and P are Younq's modulus and Poisson's ratio 
for the material, respectively. 

bF is the half-:vidth of the flange fur the 
I-section, or the total midth of the 
flange for the channel and Z-sections. 
(See sketches on figs. 3 to 6.) 

c- 

* 

-- 

. 
- ..- 
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-c 

d 

bW' width of the nob. 

?F and tW are the thicknesses of the flange and 
the web plates, respectively. - 

kF . kW, and nondimensional coefffcients read from 
figures 3 to 6. 

v is a nondimensional factor taken so that 
TIE gives the effective.modulus of 
flange and web at stresses beyond the 
elastic ran<e; 

For the rectangular tub.e, 

f 
kw2Etha 

cr =rl ----s---z 
12(1 - P )h a-- 

where 

h and th are the width and thickn.ess,.respective- 
lY, of the long side of the re.ctanqu> 
lar-tube section. 

k, nondimensional coefficient road from 
figure 7. 

2. At stresses beyond the elastic ranse, the value 
of t!-le effective modulus T)E for local buckEKe;-of thin- 
mall columns mill depend upon tests. In the absence of 
such tests, however, it is reasonable to assume that 'fi 
is a function of T, where TE is the effective modulus“ 
of an.ordinary column at stresses beyond the elastic range. 
A careful study of theory.and of-such experimental data as 
are available indicates that it is safe to assume 

v-T+3J-r - ---- 
4 

. 
provided that T fs evaluated by use of the accepted col- 
umn curve for the material. 1: 

Langley Memorial Aeronautical Laboratory, 
Batfonal Advisory Committee for Aeronautics, 

Lanslep Field, Va., September 13, 1939. -.- 
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TABLE I 

Calculated Minimum Values of 

kF for I-Sections by the Energy-Solutidn 

----- 
tw 

\ 
bw t; 
5 \ 

T 

0 
.20 
.40 
.60 
.80 

1.00 
,1;20 
1.40 
1.60 
1.70 
1.80 
1.85 
1.90 
2.00 
2.40 
2.80 
3.20 
3.40 
3.60 
3.80 
4.00 
5.00 
6.67 

---- 

I- - 

0.5 

kE ------ 
1 

-m---m___ 
1.288 

.623 

1.288 
1.019 

.567 
.852 

.536 
.783 

:508 
.500 
.491 
.486 
,473 
.427 
.295 
. 216 
.165 

.735 

.688 

.d6 2 

.597 

.520 

.a40 

.130 .367 

.105 .306 

.067 .200 

.Q37 .I12 
-- 

2 

----- 
1.288. 

1.193 

1.;47 

1.127. 

1.118- 

- '3 

1.113 
1.110 
1,105 
1.093 
1.,062 
1.015 

,955 
.893 
,623 
.364 

, 

-. 
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TABLE II 

Calculated Minimum Values of 

kw 'for I-Sections by the EnerTy. Solution 

-f (,P --- 
= %Q.a)----- -q ----. -- 

tm 

\ 
bF 
5; 

G 
I .----, 

t 

I- 

-1 
0.5 1 

i 

.2 

mm_----- 
1 

0 
.050 
*loo- 
.150 
. 200 
,250 . 
.278 
.313 
,357' 
.417 
,500' 
.526 
.556 
.588 

625 
:714. 
,833 

1 . 0.00 . . 

.-------. 
4.00 
6.05 
6.46 
6.61 
6.68 
6.72 
6.73 
6.75. 
6.77 
6.79 
6.82 
6.84 
6.37 
5.78 
5.20 

3..09 

-------. 

4.90 4.00 
4.49 4.06 
4.82 4.09 
4.98 4.04 
5.01 3.89 
4.89 3.57 
4.75 3.29 
4.50 2.80 
4.08 2.17 
3.44 1.60 
2.65 1.11 

2.23 

1.44. 

6784 
-._---- 

- 
. 715 
- . . 
,406 

. 

. 
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TABLE III 

Calculated Minimum Values of kE. 

for Channel and Z-Sections by the Energy Solution 

0 
.200 
,400 
.600 
,800 

1.00 
1.20 
1.40 
1.60 
1.75 
1.80 
1.82 
1.90 
2.00 
2.20 
2.40 
2.80 
3.20 ._ 
3.40 
3.60 
3.80 
4,r)o 
4.40 
4.80 
5.20 
5.60 
6.00 

11-- 

T- 
----BOO. 3 ) 

-- 
0.5 

kF -- 
1 

l- -- 

2 
--- 

1.288 
.- 

,695 

I- 
1.288 
1.111 

,962 
,621 

-- 
1.288 

1.;34. 

1.204 - 
.892 

,576. 1;193 
,836 

.528 

.506 

.499 

.493 

.455 

.410 

. 338 
,284 
. 208, 
.15-g 

1.188 

.770 
.' . 

,730 1.187 

.629 

.521 

.423 

.125 

,101 
.083. 

.059 

.044 
--- 

. 345 

284 
:236 
.199 
.170 
.146 
.127 

1.188 
1.190 
1.192 
1.178 
1.103 
1.021 

-1640 
.799 
. 681 
.587 
,508' 
.444 

--- - -- 

7 
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TABLE IV 

Calculated Minimum Values of km 

for Channel and Z-Sections by the Energy Solution 

_I_---- 

.--I_- 
0 

.050 
,100 
.130 
.167 
.179 
,192 
,208 
.227 
.250 
.263 
.278 
.294 
.313 . 
. 357 
,417. 
,455 - 
,500 
.526 
.548. 
.556 

571 
:625 
.714 

833 
1:ooo 

---- 

T 
(P = 0.3) 

,----- --I -- 

- ------- 

0.5 
----p-T- 

4.00 
5.46 
6.02. 
6.19 . 
6.31 

- '. 
6.38 

6.43 _ 
6.46 

6.49 . 

6.51 
6.53 
6.54 
6.55. 
6.56 
6.56 
6.57 
6.47 
6.20 
5.41 

3.32 

kw ,-- ----- 
1 

,--- 
4.00 
4.26 
4.45 

4.58 
4.59 
4.60 
4.59 
4.58 
4.54 

,4.47 

4.33 . 
4.08 
3.62 

2.92 

2.50 

1.64 

.892 

.------ 

2 
.-- -- 

4.00 
4.03 
4.04 

4.00 
x.98 
3.97 
3.92 
3.86 
3.76 
3.68 
3.57 
3.4c) 
3.05 
2.33 
1.71 

1.19 

. 761 

.429 

.- 
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TABLE V 

Calculated Minimum Values of k 

for Rectangular Tubs by the Energy Solution 

0 
.r)50 
.075 
.lOO 

125 
1200 
.300 
,400 
,500 
.525 
.550 
.575 
.590 
,600 
.610 
.625 
.650 
,675 
,700 
.a00 
.900 

1.000 
.P-. 

1 

- 

(p = 0.3) 
--- ----- --l 

k 

0.5 
-- 

7.01 
5.13 
4.88 
4.72 
4.62 
4.43 
4.31 
4.22 
4.11 
4.08 
4.04 
4.00 
3.97 
3.95 
3.92 
3.89 
3.81 
3.64 
3.38 
2.58 
2.03 
1.64 

-- 

1 

7.01 
6.45 

6.09 

5.68 
5.45 
5.29 
5.16 

5.03 6.57 

4.87 6.57 
4.66 6.57 
4.37 6.57 
4.00 6.58 

2 
--- -- 

7.01 

6.85 

6.73 
6.65 
6.61 
6.59 

--- 
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Figure l.- Displacements of the oroB1 seotion in 
primary, or general. failure of L c0lnmn. 

Figure 2.- Displaoewnts of the oroan sad&n in 
SecoIbky, or looal, failtlre of L oollmm. 
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